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PREFACE TO THE SECOND EDITION

The many developments and clarifications in the theory of elasticity
and its applications which have occurred since the first edition was
written are reflected in numerous additions and emendations in the
present edition. The arrangement of the book remains the same for
the most part. :

The treatments of the photoelastic method, two-dimensional
problems in curvilinear coordinates, and thermal stress have been
rewritten and enlarged into separate new chapters which present many
methods and solutions not given in the former edition. An appendix
on the method of finite differences and its applications, including the
relaxation method, has been added. New articles and paragraphs
incorporated in the other chapters deal with the theory of the strain
gauge rosette, gravity stresses, Saint-Venant’s principle, the components
of rotation, the reciprocal theorem, general solutions, the approximate
character of the plane stress solutions, center of twist and center of
shear, torsional stress concentration at fillets, the approximate treat-
ment of slender (e.g., solid airfoil) sections in torsion and bending,
and the circular cylinder with a band of pressure.

Problems for the student have been added covering the text as far
as the end of the chapter on torsion.

It is a pleasure to make grateful acknowledment of the many helpful
suggestions which have been contributed by readers of the book.

S. TIMOSHENKO
J. N. GoobIier

Paro Arro, CALIF.
February, 1951



PREFACE TO THE FIRST EDITION

During recent years the theory of elasticity has found considerable
application in the solution of engineering problems. There are many
cases in which the elementary methods of strength of materials are
inadequate to furnish satisfactory information regarding stress distri-
bution in engineering structures, and recourse must be made to the
more powerful methods of the theory of elasticity. The elementary
theory is insufficient to give information regarding local stresses near
the loads and near the supports of beams. It fails also in the cases
when the stress distribution in bodies, all the dimensions of which
are of the same order, has to be investigated. The stresses in rollers
and in balls of bearings can be found only by using the methods of the
theory of elasticity. The elementary theory gives no means of
investigating stresses in regions of sharp variation in cross section of
beams or shafts. It is known that at reentrant corners a high stress
concentration occurs and as a result of this cracks are likely to start
at such corners, especially if the structure is submitted to a reversal of
stresses. The majority of fractures of machine parts in service can
be attributed to such cracks.

During recent years considerable progress has been made in solving
such practically important problems. In cases where a rigorous solu-
tion cannot be readily obtained, approximate methods have been
developed. In some cases solutions have been obtained by using
experimental methods. As an example of this the photoelastic
method of solving two-dimensional problems of elasticity may be
mentioned. The photoelastic equipment may be found now at
universities and also in many industrial research laboratories. The
results of photoelastic experiments have proved especially useful in
studying various cases of stress concentration at points of sharp
variation of cross-sectional dimensions and at sharp fillets of reentrant
corners. Without any doubt these results have considerably influ-
enced the modern design of machine parts and helped in many cases
to improve the construction by eliminating weak spots from which
cracks may start.

Another example of the successful application of experiments in
the solution of elasticity problems is the soap-film method for deter-
mining stresses in torsion and bending of prismatical bars. The

vu
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difficult problems of the solution of partial differential equations with
given boundary conditions are replaced in this case by measurements
of slopes and deflections of a properly stretched and loaded soap film.
The experiments show that in this way not only a visual picture of
the stress distribution but also the necessary information regarding
magnitude of stresses can be obtained with an accuracy sufficient for
practical application.

Again, the electrical analogy which gives a means of investigating
torsional stresses in shafts of variable diameter at the fillets and
grooves is interesting. The analogy between the problem of bending
of plates and the two-dimensional problem of elasticity has also been
successfully applied in the solution of important engineering problems.

In the preparation of this book the intention was to give to engi-
neers, in a simple form, the necessary fundamental knowledge of the
theory of elasticity. It was also intended to bring together solutions
of special problems which may be of practical importance and to
describe approximate and experimental methods of the solution of
elasticity problems.

Having in mind practical applications of the theory of elasticity,
matters of more theoretical interest and those which have not at
present any direct applications in engineering have been omitted in
favor of the discussion of specific cases. Only by studying such cases
with all the details and by comparing the results of exact investigations
with the approximate solutions usually given in the elementary books
on strength of materials can a designer acquire a thorough under-
standing of stress distribution in engineering structures, and learn to
use, to his advantage, the more rigorous methods of stress analysis.

In the discussion of special problems in most cases the method
of direct determination of stresses and the use of the compatibility
equations in terms of stress components has been applied. This
method is more familiar to engineers who are usually interested in the
magnitude of stresses. By a suitable introduction of stress functions
this method is also often simpler than that in which equations of
equilibrium in terms of displacements are used.

In many cases the energy method of solution of elasticity problems
has been used. In this way the integration of differential equations is
replaced by the investigation of minimum conditions of certain inte-
grals. Using Ritz’s method this problem of variational calculus is
reduced to a simple problem of finding a minimum of a function.
In this manner useful approximate solutions can be obtained in many
practically important cases.



PREFACE TO THE FIRST EDITION ix

To simplify the presentation, the book begins with the discussion of
two-dimensional problems and only later, when the reader has familiar-
ized himself with the various methods used in the solution of problems
of the theory of elasticity, are three-dimensional problems discussed.
The portions of the book that, although of practical importance, are
such that they can be omitted during the first reading are put in small
type. The reader may return to the study of such problems after
finishing with the most essential portions of the book.

The mathematical derivations are put in an elementary form and
usually do not require more mathematical knowledge than is given in
engineering schools. In the cases of more complicated problems all
necessary explanations and intermediate calculations are given so
that the reader can follow without difficulty through all the deriva-
tions. Only in a few cases are final results given without complete
derivations. Then the necessary references to the papers in which the
derivations can be found are always given.

In numerous footnotes references to papers and books on the theory
of elasticity which may be of practical importance are given. These
references may be of interest to engineers who wish to study some
special problems in more detail. They give also a picture of the
modern development of the theory of elasticity and may be of some
use to graduate students who are planning to take their work in this
field.

In the preparation of the book the contents of a previous book
(“Theory of Elasticity,” vol. I, St. Petersburg, Russia, 1914) on
the same subject, which represented a course of lectures on the theory
of elasticity given in several Russian engineering schools, were used
to a large extent.

The author was assisted in his work by Dr. L. H. Donnell and Dr.
J. N. Goodier, who read over the complete manuscript and to whom
he is indebted for many corrections and suggestions. The author
takes this opportunity to thank also Prof. G. H. MacCullough, Dr.
E. E. Weibel, Prof. M. Sadowsky, and Mr. D. H. Young, who assisted
in the final preparation of the book by reading some portions of the
manuscript. He is indebted also to Mr. L. S. Veenstra for the prep-
aration of drawings and to Mrs. E. D. Webster for the typing of the
Manuscript.

8. TIMOSHENKQ
UNiversiTY oF MICHIGAN
December, 1933
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NOTATION

Rectangular coordinates.

Polar coordinates.

Orthogonal curvilinear coordinates; sometimes rec-
tangular coordinates.

Spherical coordinates.

Outward normal to the surface of a body.
Direction cosines of the outward normal.
Cross-sectional area.

Moments of inertia of a cross section with respect
to z- and y-axes.

Polar moment of inertia of a cross section.
Gravitational acceleration.

Density.

Intensity of a continuously distributed load.
Pressure.

Components of a body force per unit volume.
Components of a distributed surface force per unit
area.

Bending moment.

Torque.

Normal components of stress parallel to z-, -, and
z-axes.

Normal component of stress parallel to n.

Radial and tangential normal stresses in polar
coordinates.

Normal stress components in curvilinear co-
ordinates.

Normal stress components in eylindrical co-
ordinates.

0 =0: +oy +0s =0y o5+ o

T
Tzyy Tzay Tys

Trd

i
Trlly They Trs

8
U, v, w
€

€z, €y, €z

Shearing stress.

Shearing-stress components in rectangular co-
ordinates,

Shearing stress in polar coordinates,

Shearing stress in curvilinear coordinates.
Shearing-stress components in eylindrical co-
ordinates.

Total stress on a plane.

Components of displacements.

Unit elongation.

Unit elongations in z-, y-, and z-directions.
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NOTATION

Radial and tangential unit elongations in polar
coordinates.

Volume expansion.

Unit shear.

Shearing-strain components in
ordinates. )
Shearing-strain components in cylindrical co-
ordinates.

Modulus of elasticity in tension and compression.
Modulus of elasticity in shear. Modulus of
rigidity.

Poisson’s ratio.

rectangular co-

Lamé’s constants.

Stress function.

Complex potentials; functions of the complex
variable z = z + 7y.

The conjugate complex variable z — dy.
Torsional rigidity.

Angle of twist per unit length.

Used in torsional problems.

Strain energy.

Strain energy per unit volume.

Time.

Certain interval of time. Temperature.
Coefficient of thermal expansion.



CHAPTER 1
INTRODUCTION

1. Elasticity. All structural materials possess to a certain extent
the property of elasticity, i.e., if external forces, producing deformation
of a structure, do not exceed a certain limit, the deformation disappears
with the removal of the forces. Throughout this book it will be
assumed that the bodies undergoing the action of external forces are
perfectly elastic, 1.e., that they resume their initial form completely after
removal of forces.

The molecular structure of elastic bodies will not be considered here.
It will be assumed that the matter of an elastic body is homogeneous and
continuously distributed over its volume so that the smallest element
cut from the body possesses the same specific physical properties as the
body. To simplify the discussion it will also be assumed that the body
is sotropic, i.e., that the elastic properties are the same in all directions.

Structural materials usually do not satisfy the above assumptions.
Such an important material as steel, for instance, when studied with a
microscope, is seen to consist of erystals of various kinds and various
orientations. The material is very far from being homogeneous; but
experience shows that solutions of the theory of elasticity based on the
assumptions of homogeneity and isotropy can be applied to steel struc-
tures with very great accuracy. The explanation of this is that the
crystals are very small; usually there are millions of them in one cubic
inch of steel. While the elastic properties of a single crystal may be
very different in different directions, the crystals are ordinarily dis-
tributed at random and the elastic properties of larger pieces of metal
represent averages of properties of the erystals. So long as the geo-
metrical dimensions defining the form of a body are large in comparison
with the dimensions of a single crystal the assumption of homogeneity
can be used with great accuracy, and if the crystals are orientated at
random the material can be treated as isotropie.

When, due to certain technological processes such as rolling, a cer-
tain orientation of the crystals in a metal prevails, the elastic properties
of the metal become different in different directions and the condition
of anistropy must be considered. We have such a condition, for
nstance, in the case of cold-rolled copper,
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2 THEORY OF ELASTICITY

2. Stress. Let Fig. 1 represent a body in equilibrium. Under the
action of external forces Py, . . . , Py, internal forces will be produced
between the parts of the body. To study the magnitude of these forces
at any point O, let us imagine the body divided into two parts 4 and B
by a cross section mm through this point. Considering one of these
parts, for instance, A, it can be
stated that it is in equilibrium
under the action of external
forces Py, . . . ,Prand theinner
forces distributed over the cross
section mm and representing the
actions of the material of the
part B on the material of the part
A. It will be assumed that
these forces are continuously dis-
tributed over the area mm in the
same way that hydrostatic pres-
“Fre. 1. sure or wind pressure is contin-

uously distributed over the sur-
face on which it acts. The magnitudes of such forces are usually
defined by their intensity, i.e., by the amount of force per unit area of
the surface on which they act. In discussing internal forces this
intensity is called siress.

In the simplest case of a prismatical bar submitted to tension by
forces uniformly distributed over the ends (Fig. 2), the internal forces
are also uniformly distributed over any cross section
mm. Hence the intensity of this distribution, .e., the it
stress, can be obtained by dividing the total tensile
force P by the cross-sectional area A.

In the case just considered the stress was uniformly

2

distributed over the cross section. In the general case % s
of Fig. 1 the stress is not uniformly distributed over

mm. To obtain the magnitude of stress acting on a

sma_ll area a_A . cut_ out from the cross section mm at any 1
point O, we assume that the forces acting across this Fia. 2.

elemental area, due to the action of material of the part

B on the material of the part 4, can be reduced to a resultant éP. If
we now continuously contract the elemental area 64, the limiting value
of the ratio 6P/8A gives us the magnitude of the stress acting on the
cross section mm at the point 0. Thelimiting direction of the resultant
oP is the direction of the stress, In the general case the direction of
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stress is inclined to the area 64 on which it acts and we usually resolve
it into two components: a normal siress perpendicular to the area, and
a shearing stress acting in the plane of the area 84.

3. Notation for Forces and Stresses. There are two kinds of exter-
nal forces which may act on bodies. Forces distributed over the sur-
face of the body, such as the pressure of one body on another, or hydro-
static pressure, are called surface forces. Forces distributed over the
volume of a body, such as gravitational forces, magnetic forces, or in
the case of a body in motion, inertia forces, are called body forces. The
surface force per unit area we shall usually resolve into three compo-
nents parallel to the coordinate axes and use for these components the
notation X, ¥, Z. We shall also resolve the body force per unit volume

into three components and denote z o
these components by X, ¥, Z. g
We shall use the letter o for de- Z =
noting normal stress and the letter e
7 for shearing stress. To indicate - ‘____r/ &z
the direction of the plane on which P i |
the stress is acting, subscripts to & | | *z. %
these letters are used. If we takea 24 o i P ¥y
very small cubic element at a point i |
0, Fig, 1, with sides parallel to the !

coordinate axes, the notations for d

the components of stress acting on Fa. 3.

the sides of this element and the directions taken as positive are as
indicated in Fig. 3. For the sides of the element perpendicular to the
y-axis, for instance, the normal components of stress acting on these
sides are denoted by o,. The subscript y indicates that the stress is
acting on a plane normal to the y-axis. The normal stress is taken
positive when it produces tension and negative when it produces
compression.

The shearing stress is resolved into two components parallel to the
coordinate axes. Two subscript letters are used in this case, the first
indicating the direction of the normal to the plane under consideration
and the second indicating the direction of the component of the stress.
For instance, if we again consider the sides perpendicular to the y-axis,
the component in the z-direction is denoted by 7, and that in the
z-direction by 7,.. The positive directions of the components of shear-
Ing stress on any side of the cubic element are taken as the positive
directions of the coordinate axes if a tensile stress on the same side
Would have the positive direction of the corresponding axis. If the
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tensile stress has a direction opposite to the positive axis, the positive
direction of the shearing-stress components should be reversed. Fol-
lowing this rule the positive directions of all the components of stress
acting on the right side of the cubic element (Fig. 3) coincide with the
positive directions of the coordinate axes. The positive directions are
all reversed if we are considering the left side of this element.

4, Components of Stress. From the discussion of the previous
article we see that, for each pair of parallel sides of a cubic element,
such as in Fig. 3, one symbol is needed to denote the normal component
of stress and two more symbols to denote the two components of shear-
ing stress. To describe the stresses acting on the six sides of a cubic
element three symbols, ¢, oy, 0., are necessary for normal stresses; and

six symbols, 7.y, Tyzy Tzzy T2zy Tyzy Tzy, fOr shearing

z - stresses. By a simple consideration of the equi-
= librium of the element the number of symbols

for shearing stresses can be reduced to three.
0|l If we take the moments of the forces acting on

yz||dz Tyz 2 2

the element about the z-axis, for instance, only
o dy - the surface stresses shown in Fig. 4 need be con-
Ty sidered. Body forces, such as the weight of the
Fro. 4. element, can be neglected in this instance, which

follows from the fact that in reducing the
dimensions of the element the body forces acting on it diminish as
the cube of the linear dimensions while the surface forces diminish as
the square of the linear dimensions. Hence, for a very small element,
body forces are small quantities of higher order than surface forces and
can be neglected in calculating the surface forces. Similarly, moments
due to nonuniformity of distribution of normal forces are of higher
order than those due to the shearing forces and vanish in the limit.
Also the forces on each side can be considered to be the area of the side
times the stress at the middle. Then denoting the dimensions of the
small element in Fig. 4 by dz, dy, dz, the equation of equilibrium of this
element, taking moments of forces about the z-axis, is

Twdzdydz = 7. drv dy dz

The two other equations can be obtained in the same manner. From
these equations we find

Tay = Tyz Tz = Tz Tey = Tus (1)

Hence for two perpendicular sides of a cubic element the components of
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shearing stress perpendicular to the line of intersection of these sides
are equal.

The six quantities oz, oy, 0z, Tzy = Tyzy Tzz = Tzr, Tyz = T2y are therefore
sufficient to describe the stresses acting on the coordinate planes
through a point; these will be called the components of stress at the

point.

It will be shown later (Art. 67) that with these six components the
stress on any inclined plane through the same 2
point can be determined. dy

5. Components of Strain. In discussing & az
the deformation of an elastic body it will be % By
assumed that there are enough constraints to c

prevent the body from moving as a rigid * —
body, so that no displacements of particles
of the body are possible without a deformation of it.

In this book, only small deformations such as occur in engineering
structures will be considered. The small displacements of particles of
a deformed body will usually be resolved into components u, v, w
parallel to the coordinate axes z, y, 2, respectively. It will be assumed
that these components are very small quantities varying continuously
over the volume of the body. Consider a small element dz dy dz of an
elastic body (Fig. 5). If the body undergoes a deformation and u, v, w
are the components of the displacement of the point O, the displace-

ment in the z-direction of an

Fic. 5.

0 ;’" 14 x adjacent point A on the z-axis
ov is
-~ P, TR .
“ormreII I —gf? u + 94 dz

\
‘JI[' due to the increase (du/dz) dz
| “ of the funetion % with increase
B ‘ \ of the coordinate z. The in-
——, LB’ crease in length of the element
¥ s u+-‘;—‘;dx OA due to deformation is there-
Fie 6 fore (0u/0z) dz. Hence the

unit elongation at point O in the

z~direction is du/dz. In the same manner it can be shown that the

unit, elongations in the y- and z-directions are given by the derivatives
/3y and dw/dz.

Let us consider now the distortion of the angle between the elements

OA and OB, Fig. 6. If u and » are the displacements of the point O in

the z- and y-directions, the displacement of the point A in the y-direc-
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tion and of the point B in the z-direction are v + (dv/9z) dz and
u + (0u/dy) dy, respectively. Due to these displacements the new
direction 0’A’ of the element OA is inclined to the initial direction by
the small angle indicated in the figure, equal to dv/dz. In the same
manner the direction O'B’ is inclined to OB by the small angle du/dy.
From this it will be seen that the initially right angle AOB between the
two elements OA and OB is diminished by the angle dv/dx + du/dy.
This is the shearing strain between the planes zz and yz. The shearing
strains between the planes zy and zz and the planes yz and yz can be
obtained in the same manner.

‘We shall use the letter e for unit elongation and the letter v for unit
shearing strain. To indicate the directions of strain we shall use the
same subscripts to these letters as for the stress components. Then
from the above discussion

ou o ow
“ =% v =5y “=%

ou , u , dw v, 0w 2)
gty T mtw wTaty

It will be shown later that, having the three unit elongations in three
perpendicular directions and three unit shear strains related to the
same directions, the elongation in any direction and the distortion of
the angle between any two directions can be calculated (see Art. 73).
The six quantities e;, . . . , v, are called the components of strain.

6. Hooke’s Law. The relations between the components of stress
and the components of strain have been established experimentally and
are known as Hooke’s law. Imagine an elemental rectangular paral-
lelopiped with the sides parallel to the coordinate axes and submitted
to the action of normal stress o, uniformly distributed over two oppo-
site sides. Experiments show that in the case of an isotropic material
these normal stresses do not produce any distortion of angles of the ele-
ment. The magnitude of the unit elongation of the element is given
by the equation

0‘2

€ = 'E, (a)

in which E is the modulus of elasticity in lension. Materials used in
engineering structures have moduli which are very large in comparison
with allowable stresses, and the unit elongation (a) is a very small
quantity. In the case of structural steel, for instance, it is usually
smaller than 0.001.
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Extension of the element in the z-direction is accompanied by lateral
contractions,
9z

e,,=—v%5: %= ~¥n (b)

in which » is a constant called Poisson’s ratio. For many materials
Poisson’s ratio can be taken equal to 0.25. For structural steel it is
usually taken equal to 0.3.

Equations (a) and (b) can be used also for simple compression.
Within the elastic limit the modulus of elasticity and Poisson’s ratio
in compression are the same as in tension.

If the above element is submitted to the action of normal stresses
0z, 0y, 05, uniformly distributed over the sides, the resultant components
of strain can be obtained by using Eqs. (@) and (b). Experiments
show that to get these components we have to superpose the strain com-
ponents produced by each of the three stresses. By this method of
superposition we obtain the equations

1
€ = E [0'; T V(G'ﬂ + 0':)]

P 1L S —— 3)
€ = % [0'2 i P(G'x + ‘Tv)]

In our further discussion we shall often use this method of superposi-
lion in calculating total deformations and stresses produced by several
forces. This method islegitimate as long as the deformations are small
and the corresponding small displacements do not affect substantially
the action of the external forces. In such cases we neglect small
changes in dimensions of deformed bodies and also small displacements
of the points of application of external forces and base our calculations
on initial dimensions and initial shape of the body. The resultant dis-
placements will then be obtained by superposition in the form of linear
functions of external forces, as in deriving Eqgs. (3).

There are, however, exceptional cases in which small deformations
cannot be neglected but must be taken into consideration. As an
example of this kind the case of the simultaneous action on a thin bar
of axial and lateral forces may be mentioned. Axial forces alone pro-
duce simple tension or compression, but they may have a substantial
effect on the bending of the bar if they are acting simultaneously with
lateral forces. In calculating the deformation of bars under such con-
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ditions, the effect of the deflection on the moment of the external forces
must be considered, even though the deflections are very small.! Then
the total deflection is no longer a linear function of the forces and can-
not be obtained by simple superposition.

Equations (3) show that the relations between elongations and
stresses are completely defined by two physical constants E and ».
The same constants can also be used to define the relation between
shearing strain and shearing stress.

Let us consider the particular case of deformation of the rectangular
parallelopiped in which ¢, = —o:
ande, = 0. Cutting out an element
abed by planes parallel to the z-axis
and at 45 deg. to the y- and z-axes
(Fig. 7), it may be seen from Fig. 7b,
by summing up the forces along and
perpendicular to be, that the normal
stress on the sides of this element is
zero and the shearing stress on the i
sides is (a)

r=3%0.— ) =0 (c) Fra. 7.

NN

Such a condition of stress is called pure shear. The elongation of the
vertical element Ob is equal to the shortening of the horizontal elements
Oa and Oc, and neglecting a small quantity of the second order we con-
clude that the lengths ab and be of the element do not change during
deformation. The angle between the sides ab and be changes, and the
corresponding magnitude of shearing strain ¥ may be found from the
triangle Obc. After deformation, we have

Oc _ r_1\_1lte
a"mﬁ 9'

Substituting, from Egs. (3),

and noting that for small y

1 Several examples of this kind can be found in 8. Timoshenko, “Strength of
Materials,” vol. II, pp. 25-49.
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X x o
™ g i Y
1+_tanztan§ 1+§
we find

_2(1 4o, _ 201 + »)r

Thus the relation between shearing strain and shearing stress is defined
by the constants F and ». Often the notation

_ E
G =T 5)
isused. Then Eq. (4) becomes
i
= G

The constant @, defined by (5), is called the modulus of elasticity in
shear or the modulus of rigidity.

If shearing stresses act on the sides of an element, as shown in Fig. 3,
the distortion of the angle between any two coordinate axes depends
only on shearing-stress components parallel to these axes and we
obtain

1 1 1

Yoy = G Tay) Yus = G Tysy Yix = G Tzz (6)

The elongations (3) and the distortions (6) are independent of each
other. Hence the general case of strain, produced by three normal and
three shearing components of stress, can be obtained by superposition:
on the three elongations given by Eqs. (3) are superposed three shear-
ing strains given by Eqs. (6).

Equations (3) and (6) give the components of strain as functions of
the components of stress. Sometimes the components of stress
expressed as functions of the components of strain are needed. These
can be obtained as follows. Adding equations (3) together and using
the notations

e=¢e+e¢+te
0 =o0.4 0y + 0. ™

we obtain the following relation between the volume expansion e and
the sum of normal stresses:

e=1;2v9 ®)
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In the case of a uniform hydrostatic pressure of the amount p we

have
g =0y =0; = —pP

and Eq. (8) gives
_ 30— 2p
e g S
which represents the relation between unit volume expansion ¢ and
hydrostatic pressure p.

The quantity E/3(1 — 2») is called the modulus of volume expansion.

Using notations (7) and solving Egs. (3) for ¢, gy, 0., we find

. vE + E
EEOFI =20 "1™
o vE E
Ll ¢ e T o el e ©)
_ vE gk E
=T FA =2 T I+
or using the notation
vE
) v
and Eq. (5), these become
0z = ke “I“ 2G£m
oy = Ae + 2Ge, (11)
0, = RG + 2663
Problems

1. Show that Egs. (1) continue to hold if the element of Fig. 4 is in motion and
has an angular acceleration like a rigid body.

2. Suppose an elastic material contains a large number of evenly distributed
small magnetized particles, so that a magnetic field exerts on any element dz dy dz
a moment p dz dy dz about an axis parallel to the z-axis. What modification will
be needed in Egs. (1)?

3. Give some reasons why the formulas (2) will be valid for small strains only.

4. An elastic layer is sandwiched between two perfectly rigid plates, to which it
is'bonded. The layer is compressed between the plates, the compressive stress
being ¢;. Supposing that the attachment to the plates prevents lateral strain
€2, € completely, find the apparent Young's modulus (i.e., o:/e) in terms of E and ».
Show that it is many times E if the material of the layer is nearly incompressible by
hydrostatic pressure.

-6 Prove that Eq. (8) follows from Egs. (11), (10), and (5).



CHAPTER 2
PLANE STRESS AND PLANE STRAIN

7. Plane Stress. If a thin plate is loaded by forces applied at the
boundary, parallel to the plane of the plate and distributed uniformly
over the thickness (Fig. 8), the stress components o, .., 7. are zero on
both faces of the plate, and it may be assumed, tentatively, that they
are zero also within the plate. The state of stress is then specified by
2, 0y, Toy ODLy, and is called plane stress. It may also be assumed that

1}

Y y
Fra. 8.

these three components are independent of 2, 7.e., they do not vary
through the thickness. They are then functions of = and y only.

8. Plane Strain. A similar simplification is possible at the other
extreme when the dimension of the body in the z-direction is very large.
If a long cylindrical or prismatical body is loaded by forces which are
perpendicular to the longitudinal elements and do not vary along the
length, it may be assumed that all cross sections are in the same condi-
tion. It is simplest to suppose at first that the end sections are con-
fined between fixed smooth rigid planes, so that displacement in the
axial direction is prevented. The effect of removing these will be
examined later. Since there is no axial displacement at the ends, and,
by symmetry, at the mid-section, it may be assumed that the same
holds at every cross section.

There are many important problems of this kind—a retaining wall
with lateral pressure (Fig. 9), a culvert or tunnel (Fig. 10), a cylindrical
tube with internal pressure, a cylindrical roller compressed by forces in

11
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a diametral plane as in a roller bearing (Fig. 11). In each case of
course the loading must not vary along the length. Since conditions
are the same at all cross sections, it is sufficient to consider only a slice
between two sections unit distance apart. The components u and » of
the displacement are functions of z and y but are independent of the

bbbl

Prrritnd

Y Y
Fia. 11.

longitudinal coordinate z. Since the longitudinal displacement w is
zero, Kgs. (2) give

v Jw
7”_'§§+§E}""0
du , ow
_dw _
“ =9z

The longitudinal normal stress ¢, can be found in terms of ¢, and oy
by means of Hooke’s law, Egs. (3). Sincee, = 0 we find

oz — ”'(o'g + o.y) = 0
or
o = v(0: + ) ®)

These normal stresses act over the cross sections, including the ends,
where they represent forces required to maintain the plane strain, and
provided by the fixed smooth rigid planes.
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By Egs. (a) and (6), the stress components 7., and r,. are zero, and,
by Eq. (b), o. can be found from o, and ¢,. Thus the plane strain prob-
lem, like the plane stress problem, reduces to the determination of
az 0y, and 7 as functions of  and y only.

9. Stress at a Point. Knowing the stress components o, 6y, 7.4 at
any point of a plate in a condition of plane stress or plane strain, the
stress acting on any plane through this point perpendicular to the plate
and inclined to the z- and y-axes can be calculated from the equations
of statics. Let O be a point of the stressed plate and suppose the stress
components ¢, oy, 7 are known

(Fig. 12). To find the stress for any %y

plane through the z-axis and inclined o =\ B

to the z- and y-axes, we take a plane 2 i
BC parallel to it, at a small distance 4 T
from O, so that this latter plane ‘ a

together with the coordinate planes cliz) 1

cuts out from the plate a very small )
triangular prism OBC. Since the Y Y }V

stresses vary continuously over the
volume of the body the stress acting
on the plane BC will approach the stress on the parallel plane through
O as the element is made smaller.

In discussing the conditions of equilibrium of the small triangular
prism, the body force can be neglected as a small quantity of a higher
order (page 4). Likewise, if the element is very small, we can neglect
the variation of the stresses over the sides and assume that the stresses
are uniformly distributed. The forces acting on the triangular prism
can therefore be determined by multiplying the stress components by
the areas of the sides. Let N be the direction of the normal to the
plane BC, and denote the cosines of the angles between the normal N
and the axes z and y by

Fia. 12,

cos Nz = I, cos Ny =m

Then, if A denotes the area of the side BC of the element, the areas of
the other two sides are Al and Am.

If we denote by X and ¥ the components of stress acting on the side
BC, the equations of equilibrium of the prismatical element give

X = lo: + mray

Y = mo, + lrsy (12)

Thus the components of stress on any plane defined by the direction
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cosines ! and m can easily be calculated from Eqs. (12), provided the
three components of stress ¢, oy, 7oy at the point O are known.

Letting « be the angle between the normal N and the z-axis, so that
[l = cos a and m = sin «, the normal and shearing components of stress
on the plane BC are (from Egs. 12)

c=Xcosa+ ¥Ysina=oc,cos? a+ o,sin? a
+ 2r., sin « cos a

r = Y cos @ — X sin a = r,,(cos? @ — sin? a)
+ (o) — 02) sin a cos «

(13)

It may be seen that the angle a can be chosen in such a manner that the
shearing stress r becomes equal to zero. For this case we have

Toy(cos® @ — sin? &) + (o — 0.) sin @ cos @ = 0
or
Tay sin « cos « 1

s — Gy T eos’a—sinta 2 e ek (4)

From this equation two perpendicular directions can be found for
which the shearing stress is zero. These directions are called principal
directions and the corresponding normal stresses principal stresses.

If the principal directions are taken as the z- and y-axes, 7.y is zero
and Egs. (13) are simplified to

¢ = o, co8? a+ oy 80’ @

T = % sin 2a(o;, — 02) 3

The variation of the stress components ¢ and r, as we vary the angle
«, can be easily represented graphically by making a diagram in which
o and r are taken as coordinates.! For each plane there will correspond
a point on this diagram, the coordinates of which represent the values
of ¢ and 7 for this plane. Figure 13 represents such a diagram. For
the planes perpendicular to the principal directions we obtain points A
and B with abscissas o, and o, respectively. Now it can be proved
that the stress components for any plane BC with an angle « (Fig. 12)
will be represented by coordinates of a point on the circle having AB as
a diameter. To find this point it is only necessary to measure from the
point A in the same direction as a is measured in Fig. 12 an arc sub-
tending an angle equal to 2. If D is the point obtained in this man-
ner, then, from the figure,

OF = OC-[—CF=U’§aﬂ+a’gd"cm2a=or,cosza+cr,sin’a

DF = CD sin 2a = 3(0; — 0y) sin 2a

1 This graphical method is due to O. Mohr, Zivilingenieur, 1882, p. 113. See
also his “Technische Mechanik,” 2d ed., 1914.
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Comparing with Egs. (13") it is seen that the coordinates of point D
give the numerical values of stress components on the plane BC at the
angle «. To bring into coincidence the sign of the shearing component
we take = positive in the upward direction (Fig. 13) and consider shear-
ing stresses as positive when they give a couple in the clockwise direc-
tion, as on the sides be and ad of the element abed (Fig. 13b). Shearing
stresses of opposite direction, as on the sides ab and dc of the element,
are considered as negative.!

As the plane BC rotates about an axis perpendicular to the 2y-plane
(Fig. 12) in the clockwise direction, and « varies from 0 to «/2, the

T
|
I
B 1. NE. F_ YA
2 ¥ 2o -
D
7% T‘ &
(@) IR
a—=7C
(&)
Fia. 13.

point D in Fig. 13 moves from A to B, so that the lower half circle
determines the stress variation for all values of « within these limits.
The upper half of the circle gives stresses for /2  a < m.

Prolonging the radius CD to the point D; (Fig. 13), i.e., taking the
angle 7 4 2a, instead of 2a, the stresses on the plane perpendicular to
BC (Fig. 12) are obtained. This shows that the shearing stresses on
two perpendicular planes are numerically equal as previously proved.
As for normal stresses, we see from the figure that OF, 4+ OF = 20C,
t.e., the sum of the normal stresses over two perpendicular cross sec-
tions remains constant when the angle a changes.

The maximum shearing stress is given in the diagram (Fig. 13) by
the maximum ordinate of the circle, i.e., is equal to the radius of the
circle. Hence

Oz — Oy

o, =~ (15)

It acts on the plane for which a = =/ 4, i.e., on the plane bisecting the
angle between the two principal stresses.

! This rule is used only in the construction of Mohr's circle. Otherwise the
rule given on p. 3 holds,
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The diagram can be used also in the case when one or both principal
stresses are negative (compression). It is only necessary to change the
sign of the abscissa for compressive stress. In this manner Fig. 14a
represents the case when both principal stresses are negative and
Fig. 14b the case of pure shear.

e
D
O 1+
% (e) (&)
Fia., 14.

From Figs. 13 and 14 it is seen that the stress at a point can be resolved into two
parts: One, uniform tension or compression, the magnitude of which is given by the
abscissa of the center of the circle; and the other, pure shear, the magnitude of
which is given by the radius of the circle. When several plane stress distributions
are superposed, the uniform tensions or compressions can be added together

r G
% 28
2a-
B_|a
z,I —= PLZET
[7)v
o,
yr" fex)
=z

B

Y 6)
Fia. 15.

algebraically. The pure shears must be added together by taking into account
the directions of the planes on which they are acting. It can be shown that, if we
superpose two systems of pure shear whose planes of maximum shear make an
angle of g8 with each other, the resulting system will be another case of pure shear.
For example, Fig. 15 represents the determination of stress on any plane defined
by a, produced by two pure shears of magnitude 7, and ; acting one on the planes
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zz and yz (Fig. 15a) and the other on the planes inclined to zz and yz by the angle 8
(Fig. 160). In Fig. 15a the coordinates of point D represent the shear and normal
stress on plane CB produced by the first system, while the coordinate of D, (Fig.
15b) gives the stresses on this plane for the second system. Adding OD and 0D,
geometrically we obtain 0G, the resultant stress on the plane due to both systems,
the coordinates of @ giving us the shear and normal stress. Note that the magni-
tude of OG does not depend upon «. Hence, as the result of the superposition of
two shears, we obtain a Mohr circle for pure shear, the magnitude of which is
given by OG, the planes of maximum shear being inclined to the zz and yz planes by
an angle equal to half the angle GOD.

A diagram, such as shown in Fig. 13, can be used also for determining
principal stresses if the stress compo-

nents o, 0y, T for any two perpendicular o

planes (Fig. 12) are known. We begin :ﬁ'

in such a case with the plotting of the two = c

points D and D;, representing stress con- 4 T
ditions on the two coordinate planes a,

(Fig. 16). In this manner the diameter

DD, of thecircle is obtained. Construct- D

ing the circle, the principal stresseseyand T ;-i n

o2 are obtained from the intersection of
the circle with the abscissa axis. From the figure we find

— z
0'1=OC-I-C’D=':‘r’_gﬂr"‘{'\{(aE 2%) + 757

= 00 = 0D =TT % == |,
Sl B g T

The maximum shearing stress is given by the radius of the circle, z.e.,

1 Gz — Oy - =
Taax. = 5 (o1 — 02) = \]('T) + o a7

In this manner all necessary features of the stress distribution at a
point can be obtained if only the three stress components o, oy, 7 are
known,

10. Strain at a Point. When the strain components e, ¢, vz at a
point are known, the unit elongation for any direction, and the decrease
of a right angle—the shearing strain—of any orientation at the point
can be found. A line element PQ (Fig. 17a) between the points (z,y),
'(50 + dz, y + dy) is translated, stretched (or contracted) and rotated
nto the line element P'Q’ when the deformation occurs. The dis-

(16)
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placement components of P are u, v, and those of Q are
du ou v a
‘u-l-adx*l'@dy. v+(_35dz+;3-§dy

If P'Q’ in Fig. 17a is now translated so that P’ is brought back to P,
it is in the position PQ"” of Fig. 17b, and QR, RQ" represent the com-
ponents of the displacement of @ relative to P. Thus

ou du » _ OV Ll
QR = Godz+ 5.dy,  RQ" = Zde+ 5 9y (a)
The components of this relative displacement QS, SQ”, normal to
PQ" and along PQ", can be found from these as

QS = —QRsin 0+ RQ” cos 6,  SQ" = QR cos -+ RQ" sin 0 (b)

ignoring the small angle QPS in comparison with 6. Since the short
line QS may be identified with an are of a circle with center P, SQ”

=Y g
e,
D dy
2 (xc+dx,y+dy)
(@ Q' (&)

Fia. 17.

gives the stretch of PQ. The unit elongation of P'Q’, denoted by e, is
SQ"/PQ. Using (b) and (a) we have

_ dudzr | dudy . o dz , v dy
“_cme(axds+6yds)+mna(6:cds+;3_yfi§)
S e (2 ) ® o
= 3 °08 9+(ay+aa: smecos&—!—aysm 0
or
€ = €. €0s% @ + 7.y sin @ cos 0 + ¢, sin? @ (c)

which gives the unit elongation for any direction 6.
The angle ¥y through which PQ is rotated is QS/PQ. Thus from (b)
and (a),
C dudzr | dudy dvdr | dvdy
or

_ o o _ du\ . _%u .,
Yy = 35 ©08 0+ (—— 63:) sin @ cos 6 3y sin? 0 (d)
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The line element PT at right angles to PQ makes an angle 6 4 (x/2)
with the z-direction, and its rotation Yo+l is therefore given by (d) when

g + (r/2) is substituted for 6. Since cos[6 + (x/2)] = — sin 6,
sin [0 + (v/2)] = cos 6, we find

P g {80 SUY . _
%4.5 = 3z Sin (] (6y 3z) 5B 0 cos @ % cos? 0 (e)

The shear strain v, for the directions PQ, PT is ¢y — VY43, 80

o = -gg-i-g—:') (cos® @ — sin? 6) +(¢% — %‘)2sinacosﬂ
or
370 = 7=y (cos? 8 — sin® 6) + (e, — €) sin 6 cos 0 )

Comparing (¢) and (f) with (13), we observe that they may be obtained
from (13) by replacing ¢ by es, 7 by v4/2, 0z by €, 0, by €, 7 by ¥2/2,
and « by 6. Consequently for each deduction made from (13) as to
o and 7, there is a corresponding deduction from (¢) and (f) as to ¢ and
vs/2. Thus there are two values of 6, differing by 90 deg., for which
v is zero. They are given by

Y= _ _ tan 20

€ — €
The corresponding strains e are principal strains. A Mohr circle
diagram analogous to Fig. 13 or Fig. 16 may be drawn, the ordinates
representing v,/2 and the abscissas ¢p. The principal strains e;, e; will
be the algebraically greatest and least values of €5 as a function of 6.
The greatest value of y,/2 will be represented by the radius of the
circle. Thus the greatest shearing strain s ma. is given by

Y0 max. — €1 — €2

11. Measurement of Surface Strains. The strains, or unit elonga-
tions, on a surface are usually most conveniently measured by means of
electric-resistance strain gauges.! The simplest form of such a gauge
i8 a short length of wire insulated from and glued to the surface. When
stretching occurs the resistance of the wire is increased, and the strain
can thus be measured electrically. The effect is usually magnified by
looping the wires backward and forward several times, to form several
gauge lengths connected in series. The wire is glued between two tabs
of paper, and the assembly glued to the surface.

The use of these gauges is simple when the principal directions are

! A detailed account of this method is given in the “Handbook of Experimental
Stress Analysis,” Chaps. 5 and 9.
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known. One gauge is placed along each principal direction and direct
measurements of e, ez obtained. The principal stresses o1, 02 may then
be calculated from Hooke's law, Egs. (3), with o; = g1, 0y = 09,
o; = 0, the last holding on the assumption that there is no stress acting
on the surface to which the gauges are attached. Then

(1 — »¥)o1 = E(ex + ver), (1 — ¥¥oz = E(ex + ver)

When the principal directions are not known in advance, three meas-
urements are needed. Thus the state of strain is completely deter-
mined if ¢, ¢, 7y can be measured. But since the strain gauges meas-

& % DZ
-1
@ ol [[FHA\_|
a4 » &\ 2 ;N\ ¢|e, o €2 1
atp \ﬁ\f-?a 27
o’ B

Casprp Care o
(@) (6) (c)
Fia. 18.

ure extensions, and not shearing strain directly, it is convenient to
measure the unit elongations in three directions at the point. Such a
set of gauges is called a “strain rosette.”” The Mohr circle can be
drawn by the simple construction® given in Art. 12, and the principal
strains can then be read off. The three gauges are represented by the
three full lines in Fig. 18a. The broken line represents the (unknown)
direction of the larger principal strain e;, from which the direction of
the first gauge is obtained by a clockwise rotation ¢.

If the z- and y-directions for Eqgs. (¢) and (f) of Art. 10 had been
taken as the principal directions, e; would be e;, ¢, would be ez, and 7.,
would be zero. The equations would then be

€ = €1 cos® 0 -+ e sin® 6, 3vs = —(e1 — €2) sin 6 cos 6

where 6 is the angle measured from the direction of ¢. These may be
written

e = ¥(e1 + &) + F(es — @) cos 20, Fye = —3(e — ) sin 20

and these values are represented by the point P on the circle in Fig. 18¢.
If 6 takes the value ¢, P corresponds to the point 4 on the circle in Fig.

! Glenn Murphy, J. Applied Mechanics (T'rans, A,S.M.E.), vol. 12, p. A-209,
1945; N. J. Hoft, ibid,
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18b, the angular displacement from the eg-axis being 2¢. The abscissa
of this point is ¢4, which is known. If 6 takes the value ¢ + «, P moves
to B, through a further angle AFB = 2a, and the abscissa is the known
value ex44. If 0 takes the value ¢ + o« + 8, P moves on to C, through
a further angle BFC = 28, and the abscissa iS €atp.s.

The problem is to draw the circle when these three abscissas and the
two angles «, 8 are known.

12. Construction of Mohr Strain Circle for Strain Rosette. A tem-
porary horizontal e-axis is drawn horizontally from any origin 0’, Fig.
18b, and the three measured strains e, €ais, €xts+e laid off along it.
Verticals are drawn through these points. Selecting any point D on
the vertical through €44, lines DA, DC are drawn at angles a and 8 to
the vertical at D as shown, to meet the other two verticals at A and C.
The circle drawn through D, A, and C is the required circle. Its center
F is determined by the intersection of the perpendicular bisectors of
CD, DA. The points representing the three gauge directions are 4,
B, and C. The angle AFB, being twice the angle ADB at the circum-
ference, is 2, and BFC is28. Thus A, B, C are at the required angular
intervals round the circle, and have the required abscissas. The e
axis can now be drawn as OF, -
and the distances from O to the
intersections with the circle give Voy)y
€3, e2. The angle 2¢ is the angle
of FA below this axis. Y @yl |

13. Differential Equations of % A 4
Equilibrium. We now consider Ty
the equilibrium of a small rectan- @), [I° &% @),
gular block of edges h, k, and k
unity (Fig. 19). The stresses
acting on the faces 1, 2, 3, 4, and (Tryl2
their positive directions are in- (ay);
dicated in the figure. On ac-
count of the variation of stress
throughout the material, the value of, for instance, ¢, is not quite
the same for face 1 as for face 3. The symbols o, gy, 7., Tefer to the
point z, y, the mid-point of the rectangle in Fig. 19. The values at the
mid-points of the faces are denoted by (,)s, (02)s, ete. Since the faces
are very small, the corresponding forces are obtained by multiplying
these values by the areas of the faces on which they act.?

Fi1a. 19.

s _Mom precise considerations would introduce terms of higher order which
Vanish in the final limiting process.



22 THEORY OF ELASTICITY

The body force on the block, which was neglected as a small guantity
of higher order in considering the equilibrium of the triangular prism
of Fig. 12, must be taken into consideration, because it is of the same
order of magnitude as the terms due to the variations of the stress
components which are now under consideration. If X, Y denote the
components of body force per unit volume, the equation of equilibrium
for forces in the z-direction is

(o'z) 1k - (a'z)ik + ('rw)xh S (fq;)‘.h + Xhk =0
or, dividing by hk,

(0’;)1 =z (tf:)a (T:ﬂ)'z - (Tw)i .
oot ¥ rd=0

If now the block is taken smaller and smaller, z.e., h — 0, k — 0, the
limit of [(¢2)1 — (oz)3]/h is do./0z by the definition of such a derivative.
Similarly [(rz)2 — (7=)4)/k becomes d7.,/dy. The equation of equi-
librium for forces in the y-direction is obtained in the same manner.

Thus

aa,+ar,,+X 0

(18)
30, + afﬂ + Y — 0

In practical applications the weight of the body is usually the only
body force. Then, taking the y-axis downward and denoting by p the
mass per unit volume of the body, Eqs. (18) become

do
=0
o + ay (19)
60’, a'r,,
=0
- + )

These are the differential equations of equilibrium for two-dimensional
problems.

14. Boundary Conditions. Equations (18) or (19) must be satisfied
at all points throughout the volume of the body. The stress compo-
nents vary over the volume of the plate, and when we arrive at the
‘boundary they must be such as to be in equilibrium with the external
forces on the boundary of the plate, so that external forces may be
regarded as a continuation of the internal stress distribution. These
conditions of equilibrium at the boundary can be obtained from Egs.
(12). Taking the small triangular prism OBC (Fig. 12), so that the
side BC coincides with the boundary of the plate, as shown in Fig. 20,
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and denoting by X and ¥ the components of the surface forces per unit
area at this point of the boundary, we have

X = lo, + mry

Y = moy + lry (20)

in which ! and m are the direction cosines of the normal N to the
boundary.

In the particular case of a rectangular plate the coordinate axes are
usually taken parallel to the sides of the plate and the boundary condi-
tions (20) can be simplified. Taking, for instance, a side of the plate
parallel to the z-axis we have for this part of the boundary the normal
N parallel to the y-axis; hence [ = 0 and
m = +1. Equations (20) then become s

X = 7o, Y = +o,

Here the positive sign should be taken if the

normal N has the positive direction of the y N
y-axis and the negative sign for the opposite X
direction of N. It is seen from this that at Frc. 20.

the boundary the stress components become equal to the components
of the surface forces per unit area of the boundary.

15. Compatibility Equations. The problem of the theory of elas-
ticity usually is to determine the state of stress in a body submitted to
the action of given forces. In the case of a two-dimensional problem
it is necessary to solve the differential equations of equilibrium (18),
and the solution must be such as to satisfy the boundary conditions
(20). These equations, derived by application of the equations of
statics for absolutely rigid bodies, and containing three stress compo-
nents o, gy, 7oy, are not sufficient for the determination of these compo-
nents. The problem is a statically indeterminate one, and in order to
obtain the solution the elastic deformation of the body must also be
considered. '

The mathematical formulation of the condition for compatibility of
stress distribution with the existence of continuous functions u, v, w
defining the deformation will be obtained from Eqgs. (2). In the case
of two-dimensional problems only three strain components need be
considered, namely,

du o du ,
E;—a—xi éy—b—y) ‘YW—@“"‘E (ﬂ)

X

These three strain components are expressed by two functions « and v;
hence they cannot be taken arbitrarily, and there exists a certain rela-
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tion between the strain components which can easily be obtained from
(a). Differentiating the first of the Eqgs. (a) twice with respect to y,
the second twice with respect to z, and the third once with respect to
and once with respect to y, we find

A%, , 0%, _ 0y
9yt ' 0x* 9z dy
This differential relation, called the condition of compatibility, must be
satisfied by the strain components to secure the existence of functions
u and v connected with the strain components by Egs. (¢). By using
Hooke’s law, [Egs. (3)], the condition (21) can be transformed into a
relation between the components of stress.
In the case of plane stress distribution (Art. 7), Egs. (3) reduce to

(21)

1 1 .
=% {0z — vay), “ =% (oy — voy) (22)
1 2(1
'anr:(_;fzu:'( ;];)Tw (23)
Substituting in Eq. (21), we find
9 92 a*r
5@5 (o= — voy) + 9zt (‘Tw = W’) = 2(1 + ) W Q]

This equation can be written in a different form by using the equations
of equilibrium. For the case when the weight of the body is the only
body force, differentiating the first of Eqs. (19) with respect to z and
the second with respect to y and adding them, we find

2 2 2
1y 0%, A%y

2 dx dy ax® 9yt

Substituting in Eq. (b), the compatibility equation in terms of stress
components becomes

ks a2
(Z+ Z) @ +a =0 (24)

Proceeding in the same manner with the general equations of equilib-
rium (18) we find

a? a2 oY
T @5) (oz40y) = —A+ )| == 6y) (25)

In the case of plane strain (Art. 8), we have

s = ¥(oz + ay)
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and from Hooke’s law (Egs. 3), we find

& = 311 = o = 51+ ai]

1 (26)
& = E[(l — oy, — ¥(1 + v)od]
Yow = 2(1%)- Ta @7)

Substituting in Eq. (21), and using, as before, the equations of equilib-
rium (19), we find that the compatibility equation (24) holds also for
plane strain. For the general case of body forces we obtain from Egs.
(21) and (18) the compatibility equation in the following form:
a2 a2 1 aX . aY
(é—z-,-i-—y, (Fz'l"ﬂu):‘-l—:—;(a'i'a—y (28)

The equations of equilibrium (18) or (19) together with the boundary
conditions (20) and one of the above compatibility equations give us a
system of equations which is usually sufficient for the complete deter-
mination of the stress distribution in a two-dimensional problem.!
The particular cases in which certain additional considerations are
necessary will be discussed later (page 117). It is interesting to note
that in the case of constant body forces the equations determining
stress distribution do not contain the elastic constants of the material.
Hence the stress distribution is the same for all isotropic materials, pro-
vided the equations are sufficient for the complete determination of the
stresses. The conclusion is of practical importance: we shall see later
that in the case of transparent materials, such as glass or xylonite, it is
possible to determine stresses by an optical method using polarized
light (page 131). From the above discussion it is evident that experi-
mental results obtained with a transparent material in most cases can
be applied immediately to any other material, such as steel.

It should be noted also that in the case of constant body forces the
compatibility equation (24) holds both for the case of plane stress and
for the case of plane strain. Hence the stress distribution is the same
in these two cases, provided the shape of the boundary and the external
forces are the same.?

! In plane stress there are compatibility conditions other than (21) which are in
fact violated by our assumptions. It is shown in Art. 84 that in spite of this the
method of the present chapter gives good approximations for thin plates,

* This statement may require modification when the plate or cylinder has holes,
for then the problem can be correctly solved only by considering the displace-
ments as well as the stresses. See Art. 30.
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16. Stress Function. It has been shown that a solution of two-
dimensional problems reduces to the integration of the differential
equations of equilibrium together with the compatibility equation and
the boundary conditions. If we begin with the case when the weight
of the body is the only body force, the equations to be satisfied are (see
Egs. 19 and 24)

doz | Oty _ 0
dx Y @
4w =0
a2 9
@‘I‘W) (6:+0y) =0 ©®)

To these equations the boundary conditions (20) should be added.
The usual method of solving these equations is by introducing a new
function, called the stress function.! As is easily checked, Eqgs. (a) are
satisfied by taking any function ¢ of  and y and putting the following
expressions for the stress components:

3% _ P %
Oz = ay = PgY, oy = 'a_x'i PgY, Tey = ox 6y (29)

In this manner we can get a variety of solutions of the equations of
equilibrium (a). The true solution of the problem is that which satis-
fies also the compatibility equation (b). Substituting expressions (29)
for the stress components into Eq. (b) we find that the stress function
¢ must satisfy the equation

., 0% +a¢

ozt 6x2 ay? (30)

Thus the solution of a two-dimensional problem, when the weight of
the body is the only body force, reduces to finding a solution of Eq. (30)
which satisfies the boundary conditions (20) of the problem. In the
following chapters this method of solution will be applied to several
examples of practical interest.

Let us now consider a more general case of body forces and assume that these
rorces have a potential. Then the components X and Y in Eqgs. (18) are given
by the equations

1 This function was introduced in the solution of two-dimensional problems by
G. B. Airy, Brit. Assoc. Advancement Sci. Rept., 1862, and is sometimes called the
Airy stress function.
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o 3
oz

_— (c)
3y

in which V is the potential function. Equations (18) become
Orzy

]
e (o: — V) + e 0
a oz
3; (oy — V} + Ev =0
These equations are of the same form as Egs. (a) and can be satisfied by taking
- P ...
as = 5 oy — V v ™ T T oy (31)

in which ¢ is the stress function. Substituting expressions (31) in the compati-
bility equation (25) for plane stress distribution, we find

& i SR . OGRS, £ S
5 TR == ")(azz"‘w 32)

An analogous equation can be obtained for the case of plane strain.

When the body force is simply the weight, the potential V is —pgy. In this
case the right-hand side of Eq. (32) reduces to zero. By taking the solution ¢ = 0
of (32), or of (30), we find the stress distribution from (31), or (29),

oz = —pgy, oy = —pgy, Ty =0 (d)

as a possible state of stress due to gravity. This is a state of hydrostatic pressure
pgy in two dimensions, with zero stress at ¥y = 0. It can exist in a plate or cylinder
of any shape provided the corresponding boundary forces are applied. Consider-
ing a boundary element as in Fig. 12, Eqs. (13) show that there must be a normal
pressure pgy on the boundary, and zero shear stress. If the plate or cylinder is to
be supported in some other manner we have to superpose a boundary mnormal
lension pgy and the new supporting forces. The two together will be in equilibrium,
and the determination of their effects is a problem of boundary forces only, without
body forces.t

Problems

1. Show that Egs. (12) remain valid when the element of Fig. 12 has acceleration.
2. Find graphically the principal strains and their directions from rosette
measurements

@ =2X10" =135 X10"%,  expe = 0.95 X 10-3 in. per inch
where ¢ = g = 45°,

1 ! This problem, and the general case of a potential V such that the right-hand
side of Eq. (32) vanishes, have been discussed by M. Biot, J. Applied Mechanics
(Trans. A.S.M.E.), 1935, p. A-41,
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8. Show that the line elements at the point z, y which have the maximum and
minimum rotation are those in the two perpendicular directions @ determined by

tan 20 = ﬂ—-—)/(

4. The stresses in a rotating disk (of unit thlck.uess) can be regarded as due to
centrifugal force as body foree in a stationary disk. Show that this body force is
derivable from the potential ¥ = —3pw?(z® + y?), where p is the density, and » the
angular velocity of rotation (about the origin).

B. A disk with its axis horizontal has the gravity stress represented by Egs.
(d) of Art. 16. Make a sketch showing the boundary forces which support its
weight. Show by another sketch the auxiliary problem of boundary forces which
must be solved when the weight is entirely supported by the reaction of a horizontal
surface on which the disk stands.

6. A cylinder with its axis horizontal has the gravity stress represented by Egs.
(d) of Art. 16. Its ends are confined between smooth fixed rigid planes which
maintain the condition of plane strain. Sketch the forces acting on its surface,
including the ends.

7. Using the stress-strain relations, and Eqs. () of Art. 15 in the equations of
equilibrium (18), show that in the absence of body forces the displacements in
problems of plane stress must satisfy
o , u , 1+»a fou Bu)_o

Q+Es}7+l—vaz a;""@

and a companion equation.

8. The figure represents a “tooth” on a plate in a state of plane stress in the
plane of the paper. The faces of the tooth (the two straight lines) are free from
force. Prove that there is no stress at all at the apex of the tooth. (N.B.: The
same conclusion cannot be drawn for a reentrant, i.e., internal, corner.)



CHAPTER 3

TWO-DIMENSIONAL PROBLEMS
IN RECTANGULAR COORDINATES

17. Solution by Polynomials. It has been shown that the solution
of two-dimensional problems, when body forces are absent or are con-
stant, is reduced to the integration of the differential equation

1 o 3
azt az? dy*

+% -0 @

having regard to boundary conditions (20). In the case of long
rectangular strips, solutions of Eq. (¢) in the form of polynomials are
of interest. By taking polynomials
of various degrees, and suitably ad- @2 762 f-,'z
justing their coefficients, a number of o 0 (0 5 1 S
practically important problems can be
solved.?

Beginning with a polynomial of the

second degree TESTERiEE

¥
b2 = 92—2 z? 4 bazy + % y? (b) Fia. 21.

X

5 S PN

-

which evidently satisfies Eq. (a), we find from Egs. (29), putting
pg =0,
_ % by _ - ds

= a”=

Oy = ayg 2y

All three stress components are constant throughout the body, i.e., the
stress function (b) represents a combination of uniform tensions or
compressions? in two perpendicular directions and a uniform shear.
The forces on the boundaries must equal the stresses at these points as
discussed on page 23; in the case of a rectangular plate with sides
parallel to the coordinate axes these forces are shown in Fig. 21.

' A. Mesnager, Compt. rend., vol. 132, p. 1475, 1901, See also A. Timpe, Z.
Math. Physik, vol. 52, p. 348, 1905.
) 2 This depends on the sign of coefficients a; and b.. The directions of stresses
indicated in Fig. 21 are those corresponding to positive values of as, ba, c,.
29
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Let us consider now a stress function in the form of a polynomial of
the third degree:

¢ = 5~ 2a:=+ x’y-!—“-'ﬂy+ (c)

This also satisfies Eq. (a). Using Eqgs. (29) and putting pg = 0, we
find

2
a==%;3=0sz+day
tf:.-%—asz-i—bsy

__ b _
T = 7 3z 9y bz — cay

For a rectangular plate, taken as in Fig. 22, assuming all coefficients
except d; equal to zero, we obtain pure bending. If only coefficient as
is different from zero, we obtain pure bending by normal stresses
applied to the sidesy = +c of the plate. If coefficient b; or ¢; is taken

ol fol lololgme
z . % ~byl
¥ f —=
=3 c g c t
5 i
A = =T T T oo
- r'4
y b ¢
Fia. 22. Fia. 23.

different from zero, we obtain not only normal but also shearing
stresses acting on the sides of the plate. Figure 23 represents, for
instance, the case in which all coefficients, except b3 in function (¢), are
equal to zero. The directions of stresses indicated are for b; positive.
Along the sides y = +¢ we have uniformly distributed tensile and
compressive stresses, respectively, and shearing stresses proportional
tox. Onthesidez = [ wehave only the constant shearing stress —bsl,
and there are no stresses acting on the sidex = 0. An analogous stress
distribution is obtained if coefficient ¢; is taken different from zero.
In taking the stress function in the form of polynomials of the second
and third degrees we are completely free in choosing the magnitudes of
the coefficients, since Eq. (a) is satisfied whatever values they may
have. In the case of polynomials of higher degrees Eq. (a) is satisfied
only if certain relations between the coefficients are satisfied. Taking,
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for instance, the stress function in the form of a polynomial of the
fourth degree,

d; €4
2,,2 B 3 e A |
¢4 434'}'3 2533}']‘ 7y “"3_2-75?;' +4'3y (d)

and substituting it into Eq. (a), we find that the equation is satisfied
only if
es = —(2¢q + a4)

The stress components in this case are

62
O = 3—'_:;‘! = 04-'-52 + d;a:y — (204 + th)y’
62
oy = 6.::; = as? + baxy + coy?
_ 0% _ _bs o, ds
T = 3z 9y B Zeiry 2 vt
Coefficients a4, . . . , ds in these expressions are arbitrary, and by

suitably adjusting them we obtain various conditions of loading of a
rectangular plate. For instance, taking all coefficients except ds equal
to zero, we find

d
= (e)

Assuming d4 positive, the forces acting on the rectangular plate shown
in Fig. 24 and producing the stresses (¢) are as given. On the longi-
tudinal sides y = +e¢ are uniformly distributed shearing forces; on the
ends shearing forces are distributed according to a parabolic law. The
shearing forces acting on the boundary

o = dy, oy =0, Tep =

of the plate reduce to the couple! i ‘;. H—
>
_del ,  1de® o o2, . 4
M—-——2 2¢ — 375 2cl—§d4cl I.._._q......_.._._-.—
This couple balances the couple pro- ¢
duced by the normal forces along the ¥ i
side z = [ of the plate. S

Let us consider a stress function in the form of a polynomial of the
fifth degree.

$s = 5{154 z% +

4 fs 5
+5_4y
6))

By,
z-3°

! The thickness of the plate is taken equal to unity.



